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SUMMARY

We present a wavelet-based adaptive multiresolution algorithm for the numerical solution of multiscale
problems. The main features of the method include fast algorithms for the calculation of wavelet coef-
�cients and approximation of derivatives on nonuniform stencils. The connection between the wavelet
order and the size of the stencil is established. The algorithm is based on the mathematically well-
established wavelet theory. This allows us to provide error estimates of the solution resulting from the
use of an appropriate threshold criteria. The algorithm is applied to a number of test problems as well as
to the study of the ignition-delay and subsequent viscous detonation of a H2:O2:Ar mixture in a shock
tube. The simulations show the striking ability of the algorithm to adapt to a solution having di�erent
scales at di�erent spatial locations so as to produce accurate results at a relatively low computational
cost. The algorithm is compared with classic ENO and TVD schemes. It is shown that the algorithm,
besides being signi�cantly more e�cient in terms of computational cost, is free from many numerical
di�culties associated with those schemes. Copyright ? 2006 John Wiley & Sons, Ltd.

KEY WORDS: wavelets; adaptive; multiresolution; multiscale; reacting �ows

1. INTRODUCTION

Numerical simulations of many physical phenomena, such as the formation and propagation
of reactive shock waves in compressible �ow, present challenging computational di�culties
because their solution, in general, possess a wide range of spatial and temporal scales. A large
number of unknowns would be required to resolve the �nest spatial scales if one were to use
a uniform grid distribution. The solution to this di�culty is to use an adaptive grid strategy.
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The earliest adaptive algorithms have been based on �nite volume formulations and are
referred to as adaptive mesh re�nement (AMR) algorithms [1–6]. These algorithms, while
o�ering impressive advantages in computational speed and storage over uniform-grid algo-
rithms, have a number of shortcomings. First, in general, monitor functions used to adapt
the grid are based on ad hoc combinations of magnitudes of gradients of physical variables.
While such adaption criteria makes sense intuitively, it is nevertheless heuristic in nature.
A rigorously based criteria for mesh re�nement is not available. As a result one cannot guar-
antee that the grid distribution is optimal in some sense. Second, for the above reason, it is
di�cult to estimate errors in AMR algorithms so as to directly control the solution accuracy.
While Richardson extrapolation is used for error estimation and mesh re�nement [3], as Quirk
[5] points out, the use of this criteria is more costly and, while appearing to be more rigorous,
yields no more accuracy than ones obtained using heuristic criteria since, in his words ‘near
�ow discontinuities, the very types of �ow features we are interested in, Richardson inter-
polation is invalid.’ One should note that Jameson [7] uses wavelet analysis of amplitudes
of dependent variables in a standard �nite di�erence adaptive algorithm. Lastly, it is di�cult
to construct high-order schemes using �nite volume formulations. This feature is particularly
desirable in multiscale- or multiresolution-type algorithms.
In recent years, algorithms closely related to AMR methods, utilizing multiscale decompo-

sition in the context of �nite volume formulations for conservation laws, have been published
[8–13]. These methods are referred to as multiscale representation (MR) methods. It should be
pointed out that the majority of the works cited above, while they use a multilevel approach,
they do not take full advantage of adaptivity. The multiresolution scheme is not used to com-
pute and represent the solution in compressed form. Typically, the solution is represented on
the �nest grid and adaptive computations are only used for accelerating evolution of numerical
�uxes, which are computed exactly on the �nest mesh only in regions of largest gradients
and are approximated in regions where the solution behaviour is smooth. This results in sub-
stantial limitations of potential gains in memory and computational time reductions which
fully adaptive algorithms can achieve. E�orts have been made to construct a fully adaptive
multiresolution scheme in which the solution is represented and computed on an evolving
adaptive grid [11]. MR methods have been used almost exclusively for simulations of a vari-
ety of benchmark inert inviscid problems, a notable exception being Bihari and Schwendeman
[13] who have used an MR scheme for simulations of a one-dimensional system of reactive
Euler equations with possibly sti� source terms.
Recently, e�orts have been made in the development of adaptive re�nement algorithms

using unstructured grids. For recent overviews and bibliography see Mackerle [14], Kita and
Kamiya [15], Morgan and Peraire [16], L�ohner [17], and Nithiarasu and Zienkiewicz [18].
Four di�erent adaptive procedures have been considered in the �nite element community. They
are referred to as r-, p- and h-re�nement and complete regeneration of a grid by adaptive
remeshing. However, as pointed out by Zhu et al. [19], and L�ohner and Baum [20], only the
last two approaches lead to truly e�cient and general algorithms, thus explaining their prefer-
ence in this community. While the use of unstructured grids facilitates application of adaptive
algorithms to complex geometries with or without moving boundaries, these methods have
similar shortcomings as control-volume-based algorithms. Another apparent di�culty is that
grid rearrangement is computationally expensive. This is due to the fact that every adaptive
re�nement involves not only the analysis of the current solution based on a posteriori error
estimates to achieve a prescribed accuracy [19], but also a subsequent remeshing procedure
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which is based on considerable use of search operations and mesh parameters recalculations
[21]. As a consequence, it is di�cult to rearrange the grid often during the process of nu-
merical integration without degrading the e�ciency of the algorithm. Thus, in most of these
algorithms, grid rearrangement is only performed relatively few times. It should be pointed
out that this expedient can result in an ine�cient mesh distribution at any particular time, es-
pecially in problems where fast-moving small scales are present. Not surprisingly the majority
of works dealing with adaption of unstructured grids are devoted to the numerical analysis
of stationary problems. Very few works deal with rapidly developing small structures like
shocks and boundary layers [21, 22].
Even more recently, wavelet-based multilevel or multiscale adaptive algorithms have been

proposed. These methods are either based on Galerkin (or Petrov–Galerkin) [23–27] or col-
location [7, 28–31] procedures. Analogous to boundary-element methods with h-re�nement,
some authors [32] have used wavelets to develop an adaptive Galerkin boundary-wavelet
technique. Galerkin wavelet methods, though accurate, have di�culties with the treatment of
general boundary conditions, general geometries, and nonlinear terms [33]. To overcome the
di�culty associated with nonlinear terms most authors [34, 35] use a collocation procedure to
treat these terms analogous to what is done in pseudo-spectral calculations. In this formulation
linear terms are treated in wavelet space and nonlinear terms are computed in physical space.
Nevertheless, as reported by Schneider et al. [34], the resulting adaptive wavelet simulation
is still somewhat computationally expensive.
Wavelet collocation methods have been found to be just as accurate and at the same time

are mostly free of the di�culties encountered with wavelet-Galerkin methods. A number of
wavelet collocation methods have been developed [28–31, 34, 36–41].
Vasilyev and Paolucci, Cai and Wang, and Bertoluzza obtain the derivative approximation

through direct di�erentiation of the wavelet approximation of the function. Unfortunately, this
approach can lead to algorithms which are nearly as expensive as wavelet-Galerkin ones.
Holmstr�om uses a �nite-di�erence derivative approximation on a uniform stencil of functional
values. It can be shown that the latter approach, using a �nite di�erence of an order consistent
with the wavelet basis, is much more computationally e�cient and equally accurate.
Vasilyev and Bowman [40] also use �nite di�erences for derivative approximations on

a nonuniform stencil. Their method is based on the construction of a piecewise polynomial
locally approximating the solution. The derivatives are found by di�erentiating the polynomial.
In the present approach we enumerate all possible nonuniform stencil patterns and store the
vector of corresponding �nite di�erence coe�cients a priori. The local point patterns are
matched with the stored data during grid rearrangement. Subsequently, the corresponding
�nite di�erence coe�cients are retrieved and used for derivative calculations. In this paper we
also propose an error control based on the Sobolev norm of the sparse wavelet representation
(SWR) which is shown to account for the local error more accurately than the more traditional
approach based on the wavelet decomposition of the solution.
In addition, some algorithms make use of external wavelets to simplify the application of

boundary conditions on �nite intervals (Vasilyev and Paolucci). This procedure can lead to
much larger errors near boundaries than inside the domain. Lastly, we note that Donoho [42],
among others, has considered basis functions which are modi�ed near boundaries. Again, it can
be shown that expansions using such basis result in errors, which are more uniform over the
domain for low-order basis but become larger for high-order basis near boundaries. Here we
suggest a simple procedure to overcome this di�culty. It should be noted that such basis has
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the remarkable feature that it is associated with the Lagrange interpolation formula [43, 44],
which enables fast computation of expansion coe�cients of the wavelet approximation of a
function.
In this work we present a wavelet-based adaptive multiresolution representation (WAMR)

algorithm in one spatial dimension which exploits the above properties. Generalization of the
algorithm to higher spatial dimensions will be discussed in a forthcoming article. WAMR
is an e�cient, accurate, and robust algorithm that appears to be ideal for solving problems
which result in a large range of spatial scales and has the following properties. Time integra-
tion is accomplished with a linearized trapezoidal scheme. The boundary-modi�ed correlation
function of the Daubechies scaling function is used as the basis for spatial approximation.
Wavelet coe�cients of the approximating functions and their derivatives are obtained by con-
sistent �nite di�erences on a nonuniform stencil and are computed quickly and accurately. In
general, it is desirable for the error distribution to be uniform. Errors arise from the SWR,
the derivative approximation, and grid adaption. The analysis of these errors provides error
estimates which are used for thresholding wavelet coe�cients so that a near-uniform error
distribution is achieved. As a result, the number of degrees of freedom for a prescribed ac-
curacy is minimized. Lastly, the order of convergence of the method can be easily increased
by appropriately using a higher-order basis. Special emphasis is placed on demonstrating the
algorithm by solving problems of practical interest. Speci�cally, we apply the algorithm to
the simulation of propagation and re�ection of a shock wave in a tube as well as to the
simulation of the ignition-delay mechanism resulting in a H2:O2:Ar mixture.
The outline of the paper is as follows. In Section 2 we describe di�erent elements of

the wavelet approximation and adaptive algorithm for solving partial di�erential equations
(PDEs). In Section 3 we provide a detailed discussion of di�erent errors and their connection
with criteria for grid rearrangement. Results of numerical simulations of physical problems
are discussed in Section 4. Lastly, in Section 5 we summarize the main results of the work.

2. WAMR ALGORITHM

Below we describe the essential elements of the implementation of a wavelet-based adaptive
algorithm for the solution of PDEs in one spatial dimension. More speci�cally, we give a brief
introduction to wavelets and multiresolution analysis. We then elaborate on the approximation
and di�erentiation of functions based on a SWR. Lastly, we discuss the time integration
algorithm and dynamical adaption of the underlying grid.

2.1. Wavelets and bases

The Daubechies autocorrelation functions and boundary-modi�ed Daubechies autocorrelation
functions of order p have been used as elements for the construction of basis functions [44].
If ’(x) is the Daubechies scaling function of order p=2 (p even, see Reference [45]), which
implies p coe�cients in the dilation equation

’(x)=
p−1∑
i=0

ai’(2x − i) (1)
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then

�(x)=
∫ +∞

−∞
’(y − x)’(y) dy (2)

is the Daubechies autocorrelation function of order p.
The corresponding wavelet  ̃ (x) is de�ned by

 ̃ (x)=2�(2x)− �(x) (3)

The functions �(x) and  ̃ (x) satisfy the following properties:∫ +∞

−∞
xm�(x) dx= �0m;

∫ +∞

−∞
xm ̃ (x) dx=0; 06m6p (4)

It may be easily shown now that �l; k(x) = �(2lx − k) and  ̃ l; k(x) =  ̃ (2lx − k) are elements
of multiresolution biorthogonal bases.
Following Donoho [42], we use, instead, the following de�nition for the wavelet:

 (x) = �(2x − 1) (5)

This choice is dictated by the fact that our analysis will be based on a collocation procedure
(in which orthogonality of the basis does not play a role), and the computation for �nding the
wavelet expansion coe�cients when using the above wavelet reduces to the e�cient use of
the Lagrange interpolation formula [43, 44]. Thus, in a di�erent functional space, any function
f(x)∈C0(R), where C0 is the space of continuous functions, may be approximated within a
prescribed accuracy (for L large enough) by

f(x) ≈ fL(x) ≡ PLf(x)=
∑
k
f0; k�0; k(x) +

L∑
l=0

∑
k
dl; k l; k(x) (6)

The sets of translated scaling functions and wavelets span the spaces Vl and Wl, respectively,
where

Vl={�(2lx − k); k ∈Z}; l∈Z

Wl={ (2lx − k); k ∈Z}; l∈Z
(7)

Below, so as not to introduce additional notation, we will reuse the symbols for spaces Vl

and Wl, and their corresponding bases �k; l and  k; l to now apply to a �nite interval. Thus,
without loss of generality, we consider f(x)∈C0([0; 1]). Furthermore, we will overload the
symbols Vl and Wl to also denote the sets of collocation points at which the scaling functions
and wavelets are located. Speci�c meanings should be clear from the context. Thus, we de�ne
the sets of collocation points on the �nite interval by

Vl= {xl; j : xl; j= j=(2l+1p); j=0; : : : ; 2l+1p}; l∈Z (8)

and

Wl= {x′
l; k : x

′
l; k =(2k + 1)=(2

l+2p); k=0; : : : ; 2l+1p − 1}; l∈Z (9)
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The sets of points are related so that

Vl+1 =Vl ⊕ Wl (10)

Now, let us consider the approximation of a function on the �nite interval. We outline a
recursive interpolating subdivision scheme for constructing boundary-modi�ed basis elements
as well a fast algorithm for �nding corresponding wavelet coe�cients of the representation
[44] of a function. In order to approximate a function on the interval, it is necessary to modify
p scaling functions and wavelets near the left and right boundaries. This suggests that (2p+1)
basis elements should be used as a minimum on the V0 level. Then we construct the bases for
the subspaces Vl; l=1; : : : ;∞ by placing 2l-times compressed p left-side boundary scaling
functions at the �rst p collocation points, and p right-side boundary scaling functions at the
last p collocation points, and regular scaling functions at the remaining interior collocation
points.
Let us introduce the Lagrange polynomials for r ∈ [0; : : : ; q]:

Lq
i (r)=

q∏
m=0; m�=i

(r − m)
(i − m)

; i=0; : : : ; q (11)

Now, for a given point x′
l; k ⊂Wl we introduce the subset of its p nearest points at the coarser

level Xl; k ⊂Vl where, for k ∈Wl and j ∈Vl, we have

Xl; k ≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
06j6p − 1 for 06k6p=2− 2
k − p=2 + 16j6k + p=2 for p=2− 16k62l+1p − p=2

2l+1p − p+ 16j62l+1p for 2l+1p − p=2 + 16k62l+1p − 1
(12)

If we denote the values of f(x) on Xl; k by fj
l; k , then the Lagrange interpolation projection

at x′
l; k can be written as

Il; k(f)=
∑
j
Ak

jf
j
l; k (13)

where Ak
j corresponds to an interpolating coe�cient. Since we use Lagrange interpolation on

the nearest p points on the interval it follows that

Ak
j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ak
j ; 06k6p=2− 2

ap=2−1
j ; p=2− 16k62l+1p − p=2

a2
l+1p−k−1

p−1−j ; 2l+1p − p=2 + 16k62l+1p − 1

(14)

where

ak
j =Lp−1

j (k + 1=2); j=0; : : : ; p − 1; k=0; : : : ; p − 1 (15)

We note that the scaling function on V0 has the following property:

�0; n(x0; k)= �k; n; n=0; : : : ; 2p (16)
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where the collocation points x0; n for n=0; : : : ; p − 1 and n=p + 1; : : : ; 2p are associated,
respectively, with the left and right boundary scaling functions and n=p with the standard
scaling function (the correlation of the Daubechies scaling function) [42].
The recursive procedure for reconstruction of the 2p + 1 scaling functions can then be

expressed as

�0; n(x′
l; k)= Il; k(�0; n); l=0; : : : ;∞; k=0; : : : ; 2l+1p − 1 (17)

For a point on the interval we de�ne the nth wavelet on the W0 level of resolution as
 0; n(x)=�0; n(2x); n=0; : : : ; 2p−1. Analogously, we refer to  0; n(x); n=0; : : : ; p−2 as left-
side boundary wavelets,  0; p−1(x) and  0; p(x) as regular wavelets, and  0; n(x);
n=p + 1; : : : ; 2p − 1 as right-side boundary wavelets. We construct the subspaces Wl;
l=0; : : : ;∞ by locating 2l-times compressed n=0; : : : ; p − 2 left-side boundary wavelets at
the corresponding �rst p−1 collocation points, the mirror-re�ected p−1 right-side boundary
wavelets at the last p − 1 points, and regular wavelets at the remaining interior points.
The left four boundary-modi�ed scaling functions and the ordinary scaling function for

p=4 are shown in Figure 1. The right boundary-modi�ed scaling functions are mirror re�ec-
tions of the left ones.
The multilevel wavelet bases constructed above utilize compressions and translations of

modi�ed Daubechies autocorrelation functions. Elements of these bases have compact support
and cardinal (or interpolating) properties. A remarkable feature of these bases is that they
enable the construction of a fast algorithm for obtaining wavelet coe�cients. Let us brie�y
outline this algorithm for the wavelet approximation of a function f(x)∈C0([0; 1]). Consider
the following representation of the function belonging to the VL subspace:

fL(x)=
∑
k
f0; k�0; k(x) +

L∑
l=0

∑
k
dl; k l; k(x) (18)

It can be shown [43] that the wavelet coe�cients dl; k on Wl can be obtained by the following
interpolating subdivision scheme:

dl; k =fl; k − Il; k(f); l=0; : : : ; L; k=0; : : : ; 2l+1p − 1 (19)

where fl; k ≡f(x′
l; k). In other words, a wavelet coe�cient on the Wl level of resolution is

obtained by subtracting the Lagrange interpolation of the function (which uses values of the
nearest p points of the Vl level of resolution) from the value of the function at that point.
It is easy to see that any polynomial up to order p − 1 can be reproduced exactly on V0.
Furthermore, it is also evident that the computation of all wavelet coe�cients requires O(N )
operations, where N =2L+2p − 2p denotes the total number of unknowns. Other subdivision
interpolation schemes which possess certain properties have been used for multiresolution
analysis. For example, Bihari and Schwendeman [13] use a subdivision interpolation scheme
based on cell average representation, which retains the conservative property of the MR ENO
algorithm constructed by them. We take the sets of points Vl and Wl as the sets of collocation
points for the subspaces Vl and Wl, respectively. By choosing the collocation points in this
fashion, we establish the regular collocation grid G0.
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Figure 1. Left boundary scaling functions (a), (b), (c) and (d), and
ordinary scaling function (e) for p=4.
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2.2. Sparse wavelet representation and construction of irregular grid

In order to reduce the number of unknowns while retaining the accuracy, we introduce the
SWR by thresholding the wavelet coe�cients. The approximation can be decomposed into two
parts which represent wavelets whose amplitudes are above and below a speci�ed threshold �

fL(x)=fL
� (x) + RL

� (x) (20)

where

fL
� (x) ≡ PL

� f(x)=
∑
k
f0; k�0; k(x) +

L∑
l=0

∑
k; |dl; k |¿�

dl; k l; k(x) (21)

and

RL
� (x) ≡

L∑
l=0

∑
k; |dl; k |¡�

dl; k l; k(x) (22)

As numerical results will later show, the actual error of the approximation is actually smaller
than � for arbitrary p in the interior of the domain. For p¿6 the error near boundaries
becomes increasingly larger than � as p is increased. This is due to the fact that the norms
of the boundary scaling functions and wavelets are larger than unity and their norms grow
with p. In order to account for this, we rescale the boundary-modi�ed bases as follows:

�+0; k(x) ≡ �0; k(x)=‖�0; k(x)‖∞;  +0; k(x) ≡  0; k(x)=‖ 0; k(x)‖∞ (23)

The bases at higher level of resolution are then obtained as before. Subsequently, the approx-
imation fL

� (x) is now given by

fL
� (x)=

∑
k
c0; k�+0; k(x) +

L∑
l=0

∑
k; |d+l; k |¿�

d+l; k 
+
l; k(x) (24)

It can be shown that this renormalization is equivalent to the use of (21) with �k as the
thresholding parameter, where

�k = �=‖ 0; k‖∞ (25)

and ‖f(x)‖∞ ≡ maxx∈[0;1] |f(x)|. To simplify the notation, from now on we will omit the
plus superscripts, but it should be understood that our approximation is based on (24). We
now call fL

� (x) the SWR of the function f(x), and the corresponding wavelets used in the
representation the essential wavelets. It is evident that if we omit a wavelet we should also
omit the corresponding collocation point, and thus obtain an irregular collocation grid G�. Any
point in G� we call essential and the number of essential points given by Ne.

2.3. Derivative approximation

In order to solve PDEs we need to approximate derivatives of f(x). Vasilyev and Paolucci
[28, 29] approximate values of the derivative by direct di�erentiation of the SWR of the
function

f′(x) ≈ ∑
k
f0; k�′

0; k(x) +
L∑

l=0

∑
k; |dl; k |¿�

2ldl; k ′
l; k(x) (26)
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where  ′
l; k(x) ≡ d (x′)=dx′|x′=2lx−k . The number of operations required for the approximation

is O(pLN ). We note that while the number of operations increases linearly with the number
of points N , the coe�cient is typically large since it depends on the product of the order of
the basis p and the number of levels L.
As noted before, since the wavelet approximation for the present basis is related to Lagrange

interpolation, we use this fact to construct a more e�cient approximation for the derivative
of the function. We approximate the derivative of the function at a particular location in the
sparse grid by selecting a nonuniform stencil of nearest m points (later we discuss how the
number m must be chosen to be consistent with the order of the basis) and applying a �nite
di�erence formula on this nonuniform stencil. Formally we can introduce the �nite di�erence
operator by

f′(xi) ≈ Df(xi)=
∑
n
anf(xi−n) (27)

where an are �nite di�erence coe�cients obtained from the requirement that (27) be exact for
approximating the Lagrange polynomials of order m−1. To compute the rth derivative of the
function, f(r), to the same accuracy as given by the analogue of (26), we require that m¿p.
Note that using a stencil size larger than m=p does not increase the order of accuracy of
the scheme since the accuracy is controlled by the error associated with grid rearrangement
(see error analysis in Section 3.2). Furthermore, in order to construct an e�cient and robust
algorithm, we impose the restriction that the ratio of largest to smallest distance between
neighbouring points in the stencil should be less than or equal to 2. If the selected stencil does
not satisfy the restriction, which occurs rarely in practice, then we interpolate the function
by using the interpolation subdivision scheme described in Section 2.2. It is shown below
that expensive calculations of the coe�cients for derivative approximations on nonuniform
stencils after every grid rearrangement can be avoided by exploiting the dyadic structure of
the nonuniform grid which allows us to store interpolation coe�cients a priori. The structure
of m points can be described by a set of m+1 integer values, which we refer to as the stencil
structure

Im ≡ (Jm−1; im; im+1) (28)

where Jm−1 = (i1; i2; i3; : : : ; im−1) de�nes the local stencil ordered from left to right, im gives the
position of the point within the stencil for which the derivative is desired (and can take integer
values 1; : : : ; m), and im+1 provides the local scale given by 2−im+1 , which corresponds to the
smallest distance between two points within the stencil. Since our collocation grid is dyadic,
im+1 is a positive integer which can only take values of 0; : : : ; L, where L is the maximum
number of levels. In the de�nition of Jm−1; ij represents the ratio of the local distance between
two points to the smallest distance between any two points within the stencil; note that ij can
only take values of 1 or 2 due to our previous restriction. Since every element of Jm−1 can
take only two values, it itself can be represented by an integer written in binary form. Thus,
we represent the stencil structure for every point by the three integers (Jm−1; im; im+1). We
note that the number of di�erent stencil structures that we can have is �nite and given by
2m−1 ×m×L, and thus the storage requirement for these structures involving m coe�cients is
given by a matrix of 2m−1 ×m2 ×L integers. This fact allows us to compute a priori all the
structures and store them. Subsequently, during computations it is only necessary to identify
the local structure at each essential point, and then the derivative approximation becomes very
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1/81/41/8 1/4

Figure 2. Illustration of a stencil structure.

inexpensive. We note that the storage required for the stencil structures is fairly small. For
example, to obtain the derivative, if we use p=4 with 16 levels of resolution, then m=5
and L=16, thus requiring storage for 6400 integers.
The di�erentiation algorithm can be summarized as follows. After every grid rearrangement

we identify the stencil structure Im for each point on our sparse grid. Typically, only a small
fraction of the points (those near the neighbouring region to be de�ned later) change their
structure after grid rearrangement. Subsequently, by matching the local structure with the ones
stored in the stencil structure matrix, we obtain the appropriate coe�cients to compute the
derivative approximation. To illustrate the algorithm, consider the sample stencil shown in
Figure 2. The arrow indicates the collocation point at which the derivative is to be approxi-
mated. Numbers correspond to the distances between neighbouring points inside the stencil in
terms of a spatial step on the V0 level of resolution. From the above description J4 = (1; 2; 1; 2),
or in a binary form J4 = (0; 1; 0; 1)=10, i5 = 3 and i6 = 3, so that I5 = (10; 3; 3).
Since the present algorithm is based on a collocation procedure, we point out that spa-

tial discretization results in a numerical scheme which does not enforce local conservation
properties. Nevertheless, local conservation properties are satis�ed within the error criteria
imposed by the numerical method which ensures that errors at all spatial scales are below the
imposed threshold. In an upcoming paper, we extend the algorithm for derivative calculations
to the multi-dimensional case. It is shown there that the number of possible stencil patterns
does not increase substantially. While the number of operations for the multi-dimensional case
increases somewhat, the computational cost of the algorithm remain of the order of pN as
in the one-dimensional case. A comprehensive description of the multi-dimensional algorithm
is beyond the scope of the present paper which is primarily devoted to the one-dimensional
algorithm.

2.4. Time integration algorithm

After application of the wavelet discretization in space, a system of PDEs

@u
@t
=F(u; ux; uxx; : : :) (29)

with u(t; x)= {ui(t; x)} reduces to a system of ordinary di�erential equations (ODEs):

du
dt
=F(t; u) (30)

where now u= {ui;{l; k}} is a vector of dependent variables de�ned on the nonuniform collo-
cation grid.
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To integrate this system, while a number of more e�cient methods could be used, here we
use the following 2nd order linearized (implicit) trapezoidal method:(

I− �t
2
J(n)

)
�u(n+1) =

�t
2
[F(t(n+1); u(n)) + F(t(n); u(n))] (31)

where �u(n+1) = u(n+1)−u(n);�t= tn+1−tn; I is the identity matrix and J= @F=@u is the Jacobian
matrix.
In order to take advantage of the sparseness of matrix J as well as the fact that �u(n+1) =

O(�t) is small, the system of algebraic equations (31) is solved by using the ILU precondi-
tioned BiCGStab method [46]. For all calculations we used time step values su�ciently small
to assure that the error associated with time discretization is much smaller than the error
associated with spatial discretization.

2.5. Dynamically adaptive algorithm

In order to resolve all structures appearing in the solution as time evolves, we adapt the
SWR in time. To accomplish this, at any time tn we need to save the amplitudes of essential
wavelets and the amplitudes of wavelets in their neighbouring region, whose number we
denote by Nn, i.e. those wavelets which are near the essential wavelets in location and scale
[47]. We treat  l′ ; k′ as a member of the neighbouring region if there is an essential wavelet
 l; k such that (l′ − l)6m and |k ′ − k|6n, where m and n are �xed positive integers. We
would like to have m and n as small as possible to reduce the number of unknowns, but large
enough so as not to lose the representation, or accuracy, of the solution. It has been found
that the choice m= n=1 is su�cient [29] for the class of problems considered here.
Essential and neighbouring wavelets constitute the group of active wavelets, whose total

number is given by Na =Ne + Nn. The irregular grid G(n) is composed of collocation points
corresponding to all active wavelets at any given time tn.
The numerical algorithm for solving the system of algebraic equations (31) may now be

summarized as follows:

1. advance (31) to obtain the approximate solution u(n+1) on the irregular grid G(n) by using
u(n) as initial condition;

2. obtain the new grid G(n+1) based on the magnitudes of wavelet coe�cients of u(n+1) and
accounting for the new neighbouring region;

3. if G(n+1) =G(n) we increment time and go back to step 1, otherwise compute values of
u(n+1) at the new collocation points in G(n+1), and then increment time and go back to
step 1.

3. ERRORS

Estimation of discretization errors is a very important component of any adaptive method.
Error estimates can be classi�ed into two broad categories. The �rst class, a priori error
estimates, are obtained without using any knowledge of a solution. These types of error
estimates are generally very conservative, so they are mostly of theoretical value, although they
do provide information that is sometimes useful in design methodologies. Error estimates are
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given in terms of the unknown exact solution. The second class, a posteriori error estimates,
are obtained from a computed numerical solution. These error estimates are very useful for
grid adaption and solution error control.
A priori and a posteriori estimates generally are di�erent in form and use di�erent proce-

dures. In wavelet adaptive approximations these two estimates are either identical or nearly
so. In the present work we consider a method which is applied to essentially direct numerical
simulations of viscous equations. In this approach we resolve all physical scales including
viscous shocks. For the case where the problem contains very small spatial scales so that
their resolution becomes impractical, we implement an arti�cial di�usion algorithm within the
framework of our method [48, 49]. Recently, several such approaches have been successfully
developed within the context of adaptive methods [50, 51]. Below we discuss di�erent aspects
of error estimates associated with wavelet collocation approximations and their use in the
WAMR algorithm.

3.1. SWR

As shown by Donoho [42], for a su�ciently smooth function f(x) (belonging to a Besov
space, a Banach space of fractional order) and large enough L, we have from (20) that

E= ‖e(x)‖∞ ≡ ‖f(x)− fL
� (x)‖∞= ‖RL

� ‖∞ 6 �(c1 + c2 log2 �)6c� (32)

where e(x) is the local error, E is the maximum error, and c1; c2, and c are O(1) constants
which depend on p and f(x). Furthermore, Donoho [42, Theorem 3.8], also proves that the
rate of convergence of the multilevel SWR is given by

E¡CN−p
e (33)

Note that if f(x) is a polynomial of degree d 6 p − 1, then we expect E=0. Analogous
estimates have been obtained for the more general error norm ‖e(x)‖Lq by DeVore [52]. Here,
however, we use q=∞. This choise of norm for error control is the most consistent with
the collocation approach we take. We estimate local errors, and relate them to derivative
approximation errors which are also obtained locally. This allows us in turn to relate the
order of the wavelet family to the stencil size on which derivatives are approximated. In
addition, the choice of L∞ allows us to develop a simple criteria for error estimation based
on the Sobolev norm of the solution.
Below, using di�erent values of p and �, and di�erent functions f(x) such that ‖f(x)‖∞=1,

we demonstrate numerically that generally c.1. One such test function

f1(x)=0:5(x2 − 1)− sin(�x) + 0:25 sin(4�x) + 0:125 sin(8�x) + exp(−104(x − 0:5)2) (34)

chosen to have multiscale character, is illustrated in Figure 3(a). The error distributions of the
SWR for p=4 and 10, are shown, respectively, in 3(b) and (c). Figure 3(d) demonstrates
the e�ect of the renormalization (25), where it is clearly evident that the error is smaller than
� globally. Estimate (33) has also been veri�ed for the following functions:

f2(x)= sin(2�x)

f3(x)= sin(2�x) + exp(−104(x − 0:5)2)
f4(x)= sin(2�x) + exp(−104(x − 0:3)2) + exp(−105(x − 0:5)2)

(35)
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Figure 3. (a) Function f1(x) and local error distributions e(x) for �=10−3; (b) p=4;
(c) p=10; and (d) with p=10 and �k .

The approximation errors are shown in Figure 4(a) and (b) for p=6 and 10, respectively.
Very good agreement between the numerical results and estimate (33) is observed.

3.2. Derivative of SWR

As noted before, since our wavelet collocation approximation is connected with a local
Lagrange interpolation, using (32) one can establish the following estimate for the local
interpolation error at point x based on the use of a nonuniform grid:

|e(x)| ≈ |RL
� (x)| ≈ C1|f(p)(x)�xp| ≈ C ′

1� (36)

where �x∼2−l is the local spacing of the nonuniform grid and l is the local �nest level of
resolution. Now, it follows that the local error in the derivative approximation is given by

|e′(x)| ≈ |[RL
� (x)]

′| ≈ C2|f(p)(x)�xp−1| ≈ C ′
2�=�x (37)
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Figure 4. Approximation error E vs number of essential wavelets Ne for functions f1, f2, f3 and f4
(see text) with solid lines given by (33): (a) p=6; and (b) p=10.

An alternative approach is to approximate the derivative through �nite di�erences on a
nonuniform stencil of m points, with the restriction that the ratio of the largest to the smallest
distance between points in the stencil should not be greater than 2. As noted earlier, this
restriction is violated very infrequently; when it is violated we add an appropriate number of
points in the vicinity of the point where the derivative is being approximated such as to satisfy
this restriction. This procedure is based on di�erentiation of the local Lagrange approximation.
The local truncation error associated with this derivative approximation at the same point x
is given by

|e′(x)| ≡ |f′(x)− Df(x)| ≈ C3|f(m)(x)�xm−1| (38)

By taking m¿p we assure that the error in the derivative approximation given by (38) is of
the same order as that given by (37). However, the number of operations required to calculate
the derivative in this case, say if m=p, is O(pN ) which is noticeably smaller than the number
O(pLN ) required to compute (37). For this reason we use the Lagrange interpolation approach
to approximate derivatives in this work. This approach is similar to the one suggested by
Holmstr�om [38] who, instead, approximates the derivative on a uniform stencil reconstructed
from the local nonuniform grid with absent points obtained by interpolation using coarser
levels of resolution.
An additional error occurs in the derivative approximation when the collocation grid is

rearranged due to adaption. In this case, the error in the approximation at a new points
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is again given by (36). If a derivative is approximated through �nite di�erences on a stencil
which contains at least one new point, the error is approximately given by

O(f(p)(x)�xp−1) ∼ �=�x (39)

To retain the approximation accuracy, we choose a stencil size such that the truncation error
is of the same order as the error associated with grid rearrangement. This can be easily
achieved by taking m¿p. It can be easily seen that since the error associated with grid
rearrangement is larger than the truncation error for m¿p, the use of a stencil size with
m¿p for the derivative approximation will yield the same order of accuracy as one using
m=p. Numerical experiments show that the present approach typically results in a reduction
of computational time for computing derivatives by a factor of 2–5 compared to Holmstrom’s
procedure, and results in better accuracy. The above factor increases when the number of
levels of resolution and the number of �ne structures increase.

3.3. Adaption

A drawback of algorithms for error estimation and grid rearrangement is that one cannot
guarantee the accuracy of the solution a priori. The reason comes from the loss of accuracy
when derivatives are approximated through �nite di�erences. Moreover, the accuracy in the
derivative approximation is worst in regions of large gradients. As a result, a very nonuniform
error distribution is obtained over the computational domain. To overcome this di�culty, a
di�erent criteria is suggested for the construction of a nonuniform grid in evolution problems.
We allow the threshold criteria, and thus the grid distribution, to depend not only on the
solution, but also on the right-hand side of Equation (29). In arriving at this new criteria,
we assume that the error associated with time discretization is much smaller than the error
associated with space discretization.
Consider the system of nonlinear equations

@u
@t
=F(u; ux; uxx) (40)

where u(t; x)∈C1([0;∞))×C2([0; 1]), and Ck is the space of functions that are k-times dif-
ferentiable. Assume that the problem has been normalized so that, at any particular time
t; ‖u‖∞ ≡ maxi; x |ui(x)|=O(1). Suppose that three types of terms appear in F(u; ux; uxx): con-
vection type, Fci = cjuj(@ui=@x), di�usion type, Fdi =d1(@2ui=@x2) + d2ijk(@uj=@x)(@uk=@x) and
source type, F si = Si(uj). If the local error in the approximation of ui(x) is ei(x), then the
errors in the �rst and second derivatives, as shown before, are O(ei(x)=�x)=O(2lei(x)), and
O(eix)=�x2)=O(22lei(x)), respectively. The errors in the approximation of the right-hand
side can now be estimated as follows:

Eci (x)=O(2lc0ei(x)); Edi (x)=O(22ld0ei(x)); Esi (x)=O(K0ei(x)) (41)

where c0 ≡ ‖c‖∞, d0 ≡ max(‖d1‖∞; ‖d2‖∞), K0 ≡ max(‖S(u)‖∞; 1), and l is the local
resolution level.
Previously we considered a function with the thresholding criteria |dl; k |¡�. Suppose that

the thresholding for solution vector u(x) is �0. From (32) this assures that the SWR error is

E= ‖e‖∞=O(�0) (42)
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where e ≡ (e1; : : : ; eN ). A better thresholding criteria should provide a similar estimate not
only for errors in u, but also for the other terms appearing on the right-hand side of (29).
Consider U ≡ {u; ux; uxx} ⊂W 2;∞, where W 2;∞ is the Sobolev space with corresponding norm

‖U‖2;∞ ≡ max
j=0;1;2

aj‖@ju=@xj‖∞; aj¿0 (43)

From (41) we have a0 =K0, a1 = c0, and a2 =d0.
The error in the approximation of the right-hand side of system of Equations (40) is then

given by

‖e‖2;∞=E · O(max(2lc0; 22ld0; K0))= �0 · O(max(2lc0; 22ld0; K0)) (44)

If we require that ‖e‖2;∞=O(�), then the thresholding criteria becomes

|dl; k |¡�0 = �=max(2lc0; 22ld0; K0) (45)

Numerical veri�cation of this criteria is demonstrated in the next section.

4. RESULTS

4.1. Model problems

To illustrate essential features of the WAMR algorithm, we �rst solve three model problems.

(a) In the �rst example we investigate the propagation of a wave having two very di�erent
scales resulting from the solution of the following problem with �=104: the function
g(x) is used to prescribe both initial and boundary conditions

ut = ux; t¿0; x¡1 (46)

u(0; x)= g(x); u(t; 1)= g(t) (47)

where

g(x)= sin(2�x) + exp(−�(x − 0:5)2) (48)

The numerical solution at t=1 is shown in Figure 5(a). The solution is obtained
using bases with p=4 and nonuniform stencil of size m=5. The local error e(x)
at t=1 is illustrated in Figure 5(b), while in Figure 5(c) we show the error for a
reconstructed uniform stencil [38]. Figure 5(d) displays the error obtained when the
threshold �0 = �=2l resulting from the Sobolev norm, is used. The number of essential
points Ne as well as the total number of active points Na are shown in Figure 6(a) and
(b) as functions of time. The maximum number of levels used (L+1) for the solution in
Figure 5(b) and (c) is 9, while 10 levels were required for the solution in Figure 5(d).

(b) To examine errors in the derivative approximation we look at the moving shock result-
ing from (46) and (47) with �=2× 102 where

g(x)= tanh(�(x − 0:5)) (49)
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Figure 5. (a) Numerical solution and error distribution e(x) vs x for t=1, p=4; (b) �=10−4, deriva-
tives approximated on nonuniform stencil; (c) �=10−4, derivatives approximated on uniform stencil;

and (d) �0 = �=2l, �=10−3, derivatives approximated on nonuniform stencil.

The results are presented in Figure 7. It is readily seen that the accuracy of the
derivative approximation based on Lagrange interpolation is of the same order as that
resulting from the more expensive approximation obtained from (26) [28, 29]. In this
case, the maximum number of levels required for the prescribed accuracy is 8.

(c) In the third example we study the formation of a shock arising as the solution of
Burgers equation with �=2× 10−2=�:

ut + uux=�uxx; t¿0; 0¡x¡1 (50)

and initial and boundary conditions

u(0; x)= sin(2�x); u(t; 0)= u(t; 1)=0 (51)

The numerical solution at t=0:8018=� (corresponding to the time resulting in the
largest gradient at x=0:5) is shown in Figure 8(a). The solution is obtained using
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derivatives approximated on nonuniform stencil, and (d) �0 = �=max(2l; 22l�),

�=10−2, derivatives approximated on nonuniform stencil.

bases with p=4, and nonuniform stencils of size m=5 for the �rst derivative and 6
for the second derivative. The local error e(x) for �=10−4 is illustrated in Figure 8(b)
for a reconstructed uniform stencil [38], and in Figure 8(c) for a nonuniform stencil.
Figure 8(d) displays the error obtained when the threshold parameter (45) is used with
c0 = 1, d0 =�, K0 = 1, and �=10−2. The number of essential points Ne as well as the
total number of active points Na are shown in Figure 6(c) and (d) as functions of time.
The maximum number of levels required to obtain the solution given in Figure 8(b)
and (c) is 8, while that in Figure 8(d) is 7.

By comparing results of the above model problems, we conclude that the algorithm utilizing
the approximation of derivatives on a nonuniform stencil based on Lagrange interpolation
gives practically the same or better accuracy than that using a reconstructed uniform stencil.
Furthermore, in all cases the algorithm based on the nonuniform stencil is noticeably faster
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p=10 for model problem 4.1(c).

than that based on the reconstructed uniform stencil and substantially faster than that based
on the direct di�erentiation (26).
As seen from Figures 5(d) and 8(d), the use of the error criteria based on the Sobolev

norm of the numerical solution results in a more uniform error distribution and guarantees
that the solution is accurate to within �0. We use model problem (c) to demonstrate the order
of convergence of the numerical method. A series of experiments is run where the threshold
parameter � is successively reduced to take values between 10−3 and 10−11. Correspondingly,
the accuracy and the number of active points Na are increased. The dependence of the error
on the number of active points is shown in Figure 9 for p=4 and 10. The results demonstrate
excellent convergence properties of the method.

4.2. Reacting �ows in a shock tube

The shock tube is a widely used experimental tool for studying di�erent physico-chemical
processes in gases at high temperature. It is a long tube which is initially separated by a
thin diaphragm (or membrane) into two chambers: one at low pressure �lled with a test gas,
and the other at high pressure �lled with a driver gas. At a given time the diaphragm is
burst, a shock wave moves through the test gas, and at the same time a rarefaction wave
travels through the driver gas. Eventually, the shock re�ects from the end wall and the test
gas behind the re�ected shock comes to rest and is heated to a su�ciently high temperature
to ignite it.
We consider N species participating in the following M -step reversible chemical reactions:

N∑
i=1

�′
i; kAi �

N∑
i=1

�′′
i; kAi (k=1; : : : ; M) (52)

where �′
i; k and �′′

i; k are the stoichiometric coe�cients of chemical species Ai.
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Assuming that each of the chemical species behaves as an ideal gas, the dimensionless
one-dimensional unsteady conservation equations for the chemically reacting �ow are

@�
@t
+

@(�u)
@x

=0 (53)

�
Du
Dt
= − 1

	
@p
@x
+
1
Re

@
@x

(
4
3
�
@u
@x

)
(54)

�cp
DT
Dt
=

(
	 − 1
	

)
Dp
Dt

+
1

Pr Re

[
−@q
@x

− 1
Le

N∑
i=1

cp; iji
@T
@x
+ (	 − 1)Pr

(
4
3
�
@u
@x

)
@u
@x

]
+Q (55)

�
DYi

Dt
= − 1

Sc Re
@ji
@x
+!i (i=1; : : : ; N − 1) (56)

where

D
Dt
=

@
@t
+ u

@
@x

(57)

In order to close the system we also have the mixture equation of state

p=
�T
m

(58)

the heat �ux

q= − k
@T
@x

(59)

where k is the thermal conductivity, the species �ux

ji=�
N∑

j=1

mimj

m2
Dijdj − DT

i
@ ln T
@x

(60)

where

dj=
@Y?

j

@x
+ (Y?

j − Yj)
@ lnp
@x

(61)

the enthalpy of each component

hi= h0i +
∫ T

T0
cp; i(T ) dT (62)

the rate of heat generation

Q= −
N∑
i=1

hi!i (63)

where the rate of change of each component is given by

!i=mi

M∑
k=1

�i; krk (64)
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and the reaction rate rk is

rk =Kf;k(T )

[
N∏

j=1
n
�′
j; k

j − K−1
e; k

N∏
j=1

n
�′′
j; k

j

]
(65)

In the reaction rate we assume the Arrehenius model for the forward reaction

Kf;k(T )=BkT�ke−Ek =T (66)

and we have de�ned the equilibrium rate constant in terms of the equilibrium molar concen-
trations:

Ke; k =
Kf;k(T )
Kb; k(T )

=
N∏

j=1
(nj)

�′′
j; k−�′

j; k
e (67)

In the above equations T , p, and u, are, respectively, the temperature, pressure, and mean
velocity of the mixture. The mass concentration �i, molar weight mi, molar concentration ni,
molar fraction Y?

i and mass fraction Yi of each component as well as the mixture average
density �, the mean molar mass m, and the total number of moles n are related by

�i=mini; Yi=
�i

�
; Y?

i =
ni

n
; Yi=

mi

m
Y?
i

N∑
i=1

Yi=1; �=
N∑
i=1

�i; n=
N∑
i=1

ni; �=mn
(68)

The equations have been rendered dimensionless by the use of reference length L, reference
time tr , reference speed ur , reference temperature Tr , and other obvious reference properties
evaluated at Tr . In addition, we use the following relations between the reference time and
reference speed, tr =L=ur , the reference thermal and species di�usion coe�cients, DT

r =�rDr ,
between enthalpy and temperature, hr = cp; rTr , and between the reference pressure and other
reference mixture thermodynamic quantities, pr =R0�rTr=mr (R0 is the universal gas con-
stant). Here, the reference length is chosen to be the tube length, the reference speed to be
the initial sound speed of the driver gas mixture cr , the reference temperature to be the ini-
tial temperature of the mixtures, and all other properties de�ned by their initial driver-side
mixture values. The resulting dimensionless parameters are, respectively, the ratio of speci�c
heats, the Reynolds number, the Prandtl number, the Schmidt number, the Lewis number, and
dimensionless activation energies:

	=
cp;r

cv;r
; Re=

�rcrL
�r

; Pr=
�rcp;r

kr

Sc=
�r

�rDr
; Le=

Sc
Pr

; Ek =
Ek

R0Tr

(69)

In all calculations that we perform below, for simplicity we use constant viscosity, thermal
conductivity, and speci�c heats, i.e. �=1, k=1 and cp; i=1.
The imposed boundary conditions on the tube ends, x=0; 1 are

u=0; q=0; ji=0 (70)
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The above conditions indicate that the ends are rigid, and that the �uxes of heat and mass
are zero there. Note that the pressure gradient at the rigid end-walls needs to be consistent
with the momentum equation evaluated there.

(a) Simple reacting �ow. We �rst consider a simple one-step reaction (M =1, and thus drop
the subscript k) consisting of three components (N =3): oxidizer O, fuel F and product
P; thus, i=(1; 2; 3) ⇒ (A1 =O;A2 =F;A3 =P), and �′

1 = �O; �′
2 = �F; �′′

3 = �P; �′
3 = �′′

1 =
�′′
2 = 0. Furthermore, we consider the solution corresponding to the following initial
conditions:

u(0; x)=0; T (0; x)=1; �(0; x)=2:25f(x)

YO(0; x)=0:067; YF(0; x)=0:044
(71)

where

f(x)=0:5625− 0:4375 tanh((x − 0:5)=�) (72)

with �=5× 10−3. In addition, we choose the following dimensionless parameters and
physical properties:

	 = 1:4; Re=2× 103; Pr=0:7; Sc=1; E=1:2; h0O = 16; h0F =0; h0P =0

mO = 1:5; mF =1; mP =2:5; �O = �F = �P =1; K−1
e = 80; B=30; �=0

(73)

Since we consider premixed conditions, species di�usion is not important, thus we
take

ji=0 (74)

In order to be able to compare our results with other well-known accurate solutions
[53, 54], we also solve the related inert problem. In this case the gas consists of only
one component satisfying the following initial conditions:

u(0; x)=0; T (0; x)=0:77 + 0:23f(x); �(0; x)=f(x) (75)

Let us brie�y discuss the evolution of the solution of the inert problem. As a result of
bursting of the diaphragm, a shock wave propagates into the low pressure chamber. A
contact discontinuity moves right behind the shock but with lower speed. At the same
time a rarefaction wave travels in the opposite direction towards the high pressure end.
After a period of time, the shock wave re�ects from the low-pressure side end-wall and
moves in the opposite direction. The gas behind the shock comes to rest, and its tem-
perature increases. Subsequently, the re�ected shock wave collides with the incoming
contact discontinuity. As a result of this collision, part of the shock is transmitted while
another part is re�ected and propagates in the same direction as the contact discontinu-
ity, but at a faster speed. This process continues for some time. After each collision, the
contact discontinuity slows down, and, in fact, it eventually stops and never reaches the
low-pressure side end-wall before its speed is reversed. Figure 10 depicts the solution
of the viscous problem obtained by the WAMR algorithm. In this case, since it is not
too important and computationally expensive to maintain high accuracy inside shocks
(here we are not interested in the shock structure), grid rearrangement is based on the
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Figure 10. (a) Velocity; (b) temperature; (c) density; and (d) pressure
distributions as functions of x and t.
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Figure 11. Irregular multilevel grid at time t=0:24.
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Figure 12. (a) Velocity; (b) temperature; (c) pressure; (d) density; (e) fuel; and (f) product
mass fraction distributions vs x at t=0:2.

L∞ norm of the solution, rather than on the Sobolev norm (45). The threshold param-
eter used is �=10−4. The total number of collocation points required to satisfy this
threshold criteria varies between 200 and 280. The irregular multilevel collocation grid
(which corresponds to wavelet locations) is shown in Figure 11 for t=0:24. With the
evolution of the solution, the multilevel grid adapts to the local structures appearing in
the problem. There are four structures present at t=0:24: the shock wave, the contact
discontinuity, and the head and tail of the rarefaction wave. Quantitative comparisons
show very good agreement between the WAMR results and those given by Sod [54].
When the shock propagates through a premixed gas consisting of oxidizer, fuel and

product, the mixture is ignited after the shock re�ects from the end wall. We limit
our discussion to the examination of the structures existing near the shock wave. The
species concentrations are chosen so that the gas is initially at chemical equilibrium.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:749–784



WAVELET ADAPTIVE MULTIRESOLUTION COMPUTATIONS 775

0.68 0.7 0.72 0.74 0.76
0.2

0.4

0.6

0.8

x

u

0.68 0.7 0.72 0.74 0.76
1.2

1.4

1.6

1.8

x

T
0.68 0.7 0.72 0.74 0.76

0.2

0.25

0.3

0.35

0.4

x

P

0.68 0.7 0.72 0.74 0.76
0.3

0.4

0.5

0.6

x
ρ

0.68 0.7 0.72 0.74 0.76
0.1

0.105

0.11

0.115

0.12

x

Y
F

0.68 0.7 0.72 0.74 0.76

0.68

0.7

0.72

0.74

0.76

x

Y
P

(b)(a)

(d)(c)

(f)(e)

Figure 13. (a) Velocity; (b) temperature; (c) pressure; (d) density; (e) fuel; and (f) product mass
fraction distributions vs x at t=0:2. Dashed lines are wavelet results, solid lines are ZND results.

Right next to the shock wave the gas quickly comes to a nonequilibrium state, but
relaxes to chemical equilibrium far enough away. The nonequilibrium region, where
the relaxation process occurs, is called the reaction zone. All structures present can be
clearly seen in Figure 12 which represents the solution at t=0:2. In order to verify the
numerical results we also obtained the quasi-analytical pro�les immediately behind the
shock wave by using the Zeldovich–Von Neuman–D�oring (ZND) theory. Comparisons
between the wavelet and ZND results are shown in Figure 13. We can clearly see that
the agreement between the results is very good considering the approximations made
in the ZND theory. The reaction zone can be seen most clearly by examining the fuel
mass fraction plot. From the �gure we also see that the temperature increases in the
reaction zone due primarily to the exothermic reaction. In this problem, the number
of collocation points required remains between 200 and 280 for the same value of the
threshold parameter.

(b) Comparison test. In order to compare WAMR with classical algorithms, we compute
the viscous analogue of a previously considered detonation initiation problem [13, 55].
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Figure 14. (a) Pressure; (b) density; (c) velocity; and (d) progress variable vs x at
t=0:25 for Re=103, 5× 103, and 104.

The governing equations consist of the reactive compressible Navier–Stokes equations
with a single reaction progress variable Y , where Y =0 and 1 correspond to unreacted
and fully reacted gases. The reaction rate is given by

!=�
(1− Y ) exp(−E=(p=�)) (76)

and the heat generation rate by

Q=�! (77)

Values of parameters are taken to be the same as those used by Bihari and Schwende-
man [13]:


=84; E=10; �=50; 	=1:4 (78)
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Figure 15. (a) Temperature; (b) velocity; (c) pressure; and (d) density vs x at t=180 �s.

The initial conditions are taken to be

p=1; u=0; Y =0; �=1=(1 + 3e−12x) (79)

At time t ≈ 0:05 a shock wave forms with a reaction wave following behind. The heat
released from chemical reaction increases the pressure behind the shock wave, forming
a smooth bump, which eventually catches up with the shock forming a detonation wave.
We perform calculations for a variety of Reynolds numbers in the range (102; 5× 104)
and found that the �ow dynamics depends very strongly on the viscous dissipation for
Re.104. Therefore, it is essential to use Navier–Stokes equations for numerical simu-
lations of shock propagation in relatively low Reynolds number �ows. In Figure 14 we
present the results of numerical simulations at time t=0:25 for Re=103; 5× 103, and
104. The thresholding parameter used in all calculations is �=3× 10−4. The maximum
number of levels required in the three cases are 10, 12 and 13, respectively. A grid con-
vergence study has been done to show that the numerical viscosity is much smaller than
the physical one and does not in�uence the solution dynamics. Speci�cally, calculations
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Figure 16. (a) Temperature; (b) velocity; (c) pressure; and (d) density vs x at t=230 �s.

for the much smaller value of �=6× 10−5 and for three selected values of Reynolds
number have been performed. The smaller value of � demands a much �ner nonuni-
form grid with at least one more level of resolution, i.e. at least twice the resolution.
Obviously, the numerical viscosity is much smaller for this �ner grid. Nevertheless,
the solutions obtained are virtually indistinguishable from the solutions obtained on the
coarser grids with �=3× 10−4.
In their calculations, Bihari and Schwendeman solve the inviscid problem using both

a second-order TVD scheme (TVD2), and a third-order ENO scheme (ENO3). Com-
parison with their results shows that TVD2 and ENO3 with 200 points, and TVD2 with
2000 points produce similar numerical results to ours for Re=103, 5× 103 and 104,
respectively. This indicates that the e�ect of arti�cial numerical viscosity introduced
by these schemes is similar to that of physical dissipation in the Navier–Stokes model.
Our simulations show that the results for TVD2 and ENO3 with 200 points are very
inaccurate due to poor spatial resolution which results in very high numerical viscosity.
To produce an accurate numerical solution using inviscid equations, the TVD2 scheme
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requires approximately 2000 points. In order to obtain similar accurate results using
a weighted ENO scheme (WENO), Xu et al. [55] required 3200 points. The WAMR
algorithm, producing results of similar accuracy when Re=104, requires between 50
and 300 collocation points; that is, we use approximately an order of magnitude fewer
degrees of freedom than TVD/WENO schemes.

(c) Viscous detonation in H2 : O2 : Ar mixture. We next consider the viscous analogue to
the problem considered by Fedkiw et al. [56]. Initially a shock propagates in the tube
�lled with a mixture H2 :O2 :Ar. After re�ection from the end wall, the pressure and
temperature behind the shock rise signi�cantly and trigger a chemical reaction which in
turn results in a strong detonation wave. The detonation wave propagates in the same
direction as the shock and eventually catches up with it. The kinetic model includes 37
reactions involving 9 species (H;O;Ar;H2;O2;HO;H2O;HO2;H2O2). Details regarding
the physical problem are given by Singh et al. [57]. We consider a shock tube of length
L=0:12m �lled with a mixture of H2 :O2 :Ar in a 2 : 1 : 7 ratio, and the following
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Figure 18. Spatial distribution of collocation points vs resolution
level at: (a) t=180 �s; and (b) t=230 �s.

initial conditions:

�1=0:18075 kgm
−3; �2 = 0:072 kgm

−3

P1=35594 Pa; P2 = 7173Pa

u1=487:34m s−1; u2 = 0m s−1

(80)

Here subscript 1 refers to 06x6L=2 and subscript 2 to L=2¡x6L. We model species
�uxes by [58]

ji=−�D
@Yi

@x
(81)

The following values of dissipation coe�cients are used: �=1:0× 10−3 N sm−3, k=8:3
Wm−1 K−1, and D=5:6× 10−3 m3 s−1. The threshold parameter is taken to be �=10−3.
Figures 15 and 16 show the temperature, velocity, pressure and density pro�les

at time t=180 �s and t=230 �s, respectively. Figure 17 displays the species mass
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Figure 19. (a) Temperature; (b) velocity; (c) pressure; and (d) density vs x at t=230 �s—magni�ed
�ne-scale structures (shock and induction zones) with dots denoting collocation points.

fractions at t=180 �s. The corresponding multilevel grid is shown in Figure 18. In the
calculation we use up to 15 levels of resolution and a maximum of approximately 300
collocation points. To demonstrate the impressive ability of the WAMR algorithm to
resolve small scales we show the 120-times spatially magni�ed view of the shock struc-
ture in Figure 19. It is clearly seen that both viscous and reactive zones are spatially
resolved.
Finally, it is found that the algorithm does not experience any of the di�culties

associated with arti�cial entropy production which occur in Godunov-type methods
when a shock wave re�ects from a wall or when di�erent small-scale structures (like
two shocks) collide [59, 60].

5. CONCLUSIONS

A new wavelet-based solution-adaptive multiresolution algorithm is proposed for solving mul-
tiscale evolution problems. The method is based on: an e�cient wavelet spatial discretization
which allows one to minimize the number of degrees of freedom for a prescribed accu-
racy, a fast algorithm for computing wavelet amplitudes, and e�cient and accurate derivative
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approximations on an irregular grid. A new procedure for error estimation and control based
on a Sobolev norm of the sparse wavelet representation of the numerical solution is proposed.
It is shown that this procedure results in a more uniform error distribution throughout the
computational domain.
In order to demonstrate the versatility of the method we have applied the WAMR algorithm

to the simulation of two realistic problems, speci�cally, to the propagation of a detonation
wave in a shock tube, and to the simulation of the ignition-delay mechanism in a H2 :O2 :Ar
gas mixture. Usually, such problems are treated within the framework of inviscid equations and
use of Godunov-type methods. In such case, shocks and other thin structures are considered
as discontinuities. These methods can give rise to serious di�culties and possibly result in
unphysical behaviour in numerical solutions. Two examples of such anomalies encountered
when applying TVD- or ENO-type schemes to simulations of reactive �ows have been reported
by Bihari and Schwendemann [13]. One is that of wrong reaction front speed, varying widely
with time step and the second is a ‘numerical’ density spike. Moreover, it was shown that
numerical simulations of viscous equations are absolutely necessary for studying dynamics
of shock propagation in relatively low Reynolds number �ows since viscosity in such �ows
can signi�cantly in�uence the shock dynamics. The WAMR algorithm, on the other hand,
can be applied e�ectively for the direct numerical simulation of viscous equations, and has
been shown to be free of these di�culties. The numerical results show that the collocation
grid adapts very e�ectively to the local evolving structures. The scheme is found to be robust
and to produce accurate solutions using a relatively small number of unknowns. Work is in
progress in extending the algorithm to higher dimensions and incompressible �ows, and we
will report on these extensions as results become available.

ACKNOWLEDGEMENTS

The authors are grateful to Dr S. Singh and Dr J. M. Powers for their input and fruitful discussions,
and NSF, AFOSR and LANL for their generous support.

REFERENCES

1. Berger MJ, Colella P. Local adaptive mesh re�nement for shock hydrodynamics. Journal of Computational
Physics 1989; 82(1):64–84.

2. Berger MJ, Leveque RJ. Adaptive mesh re�nement using wave-propagation algorithms for hypersonic systems.
SIAM Journal on Numerical Analysis 1998; 35(6):2298–2316.

3. Berger MJ, Oliger J. Adaptive mesh re�nement for hyperbolic partial di�erential equations. Journal of
Computational Physics 1984; 53(3):484–512.

4. Quirk JJ. An alternative to unstructured grids for computing gas-dynamic �ows around arbitrarily complex
two-dimensional bodies. Computational Fluids 1994; 23(1):125–142.

5. Quirk JJ. A parallel adaptive grid algorithm for computational shock hydrodynamics. Applied Numerical
Mathematics 1996; 20(4):427–453.

6. Chiang YL, van Leer B, Powell KG. Simulation of unsteady inviscid �ow on an adaptively re�ned Cartesian
grid. AIAA Paper 93-0672, 1993.

7. Jameson L. A wavelet-optimized, very high order adaptive grid and order numerical method. SIAM Journal
on Scienti�c Computing 1998; 19(6):1980–2013.

8. Harten A. Discrete multiresolution analysis and generalized wavelets. Journal of Applied Numerical
Mathematics 1993; 12(1–3):153–192.

9. Harten A. Adaptive multiresolution schemes for shock computations. Journal of Computational Physics 1994;
115(2):319–338.

10. Harten A. Multiresolution algorithms for the numerical solution of hyperbolic conservation laws.
Communications on Pure and Applied Mathematics 1995; 48(12):1305–1342.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:749–784



WAVELET ADAPTIVE MULTIRESOLUTION COMPUTATIONS 783

11. Cohen A, Kaber SM, M�uller S, Postel M. Fully adaptive multiresolution �nite volume schemes for conservation
laws. Mathematics of Computation 2003; 72(241):183–225.

12. Dahmen W, Gottschlich-M�uller B, M�uller S. Multiresolution schemes for conservation laws. Numerische
Mathematik 2001; 88(3):399–443.

13. Bihari BL, Schwendeman D. Multiresolution schemes for the reactive Euler equations. Journal of Computational
Physics 1999; 154(1):197–230.

14. Mackerle J. Error estimates and adaptive �nite element methods. A bibliography (1990–2000). Engineering
Computations 2001; 18(5/6):802–914.

15. Kita E, Kamiya N. Error estimation and adaptive mesh re�nement in boundary element method, an overview.
Engineering Analysis with Boundary Elements 2001; 25(7):479–495.

16. Morgan K, Peraire J. Unstructured grid �nite-element methods for �uid mechanics. Reports on Progress in
Physics 1998; 61(6):569–638.

17. L�ohner R. Automatic unstructured grid generators. Finite Elements in Analysis and Design 1997; 25(1/2):
111–134.

18. Nithiarasu P, Zienkiewicz OC. Adaptive mesh generation for �uid mechanics problems. International Journal
for Numerical Methods in Engineering 2000; 47(1–3):629–662.

19. Zhu JZ, Hinton E, Zienkiewicz OC. Mesh enrichment against mesh regeneration using quadrilateral elements.
Communications in Numerical Methods in Engineering 1993; 9(7):547–554.

20. L�ohner R, Baum JD. Adaptive h-re�nement on 3D unstructured grids for transient problems. International
Journal for Numerical Methods in Fluids 1992; 14(12):1407–1419.

21. Hassan O, Probert EJ, Morgan K, Weatherill NP. Unsteady �ow simulation using unstructured meshes. Computer
Methods in Applied Mechanics and Engineering 2000; 189(4):1247–1275.

22. Mayne DA, Usmani AS, Crapper M. h-adaptive �nite element solution of unsteady thermally driven cavity
problem. International Journal of Numerical Methods for Heat and Fluid Flow 2001; 1(2):172–194.

23. Bacry E, Mallat S, Papanicolaou G. A wavelet based space-time adaptive numerical method for partial di�erential
equations. RAIRO Model. Math. Anal. Numer. 1992; 26(7):793–834.

24. Fr�ohlich J, Schneider K. An adaptive wavelet-Galerkin algorithm for one- and two-dimensional �ame
computations. European Journal of Mechanics B/Fluids 1994; 13(4):439–471.

25. Beylkin G, Keiser JM. On the adaptive numerical solution of nonlinear partial di�erential equations in wavelet
bases. Journal of Computational Physics 1997; 132(2):233–259.

26. von Watzdorf R, Marquardt W. Fully adaptive model size reduction for multicomponent separation problems.
Computers and Chemical Engineering 1997; 21:811–816.

27. Venini P, Morana P. An adaptive wavelet-Galerkin method for an elastic-plastic-damage constitutive model: 1D
problem. Computer Methods in Applied Mechanics and Engineering 2001; 190(42):5619–5638.

28. Vasilyev OV, Paolucci S. A dynamically adaptive multilevel wavelet collocation method for solving partial
di�erential equations in a �nite domain. Journal of Computational Physics 1996; 125(2):498–512.

29. Vasilyev OV, Paolucci S. A fast adaptive wavelet collocation algorithm for multidimensional PDEs. Journal of
Computational Physics 1997; 138(1):16–56.

30. Cai W, Wang JZ. Adaptive multiresolution collocation methods for initial boundary value problems of nonlinear
PDEs. Journal of Numerical Analysis 1996; 33(3):937–970.

31. Bertoluzza S. Adaptive wavelet collocation method for the solution of Burgers equation. Transport Theory and
Statistical Physics 1996; 25(3–5):339–352.

32. Abe K, Koro K, Itami K. An h-hierarchical Galerkin BEM using Haar wavelets. Engineering Analysis with
Boundary Elements 2001; 25(7):581–591.

33. Bertoluzza S, Naldi G, Ravel JC. Wavelet methods for the numerical solutions of boundary value problems
on the interval. In Wavelets: Theory, Algorithms, and Applications, Chui CK, Montefusco L, Puccio L (eds).
Academic Press, Inc.: New York, 1994; 425–448.

34. Schneider K, Kevlahan NK-R, Farge M. Comparison of an adaptive wavelet method and nonlinearly �ltered
pseudospectral methods for two-dimensional turbulence. Theoretical and Computational Fluid Dynamics 1997;
9(3/4):191–206.

35. Fr�ohlich J, Schneider K. Computation of decaying turbulence in an adaptive wavelet basis. Physica D 1999;
134(3):337–361.

36. Rastigejev YA, Paolucci S. The use of wavelets in computational �uid mechanics. In Proceedings of the 3rd
ASME/JSME Joint Fluids Engineering Conference, FEDSM99-7162, San Francisco, 1999.

37. Cai W, Zhang W. An adaptive spline wavelet ADI (SW-ADI) method for two-dimensional reaction–di�usion
equations. Journal of Computational Physics 1998; 139(1):92–126.

38. Holmstr�om M. Solving hyperbolic PDEs using interpolating wavelets. SIAM Journal on Scienti�c Computing
1999; 21(2):405–420.

39. Prosser R, Cant RS. On the use of wavelets in computational combustion. Journal of Computational Physics
1998; 147(2):337–361.

40. Vasilyev OV, Bowman C. Second-generation wavelet collocation method for the solution of partial di�erential
equations. Journal of Computational Physics 2000; 165:660–693.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:749–784



784 Y. A. RASTIGEJEV AND S. PAOLUCCI

41. Vasilyev OV, Kevlahan NK-R. Hybrid wavelet collocation-Brinkman penalization method for complex geometry
�ows. International Journal for Numerical Methods in Fluids 2002; 40:531–538.

42. Donoho DL. Interpolating wavelet transforms. Technical Report 408, Department of Statistics, Stanford
University, 1992.

43. Dubuc S. Interpolation through an iterative scheme. Journal of Mathematical Analysis and Applications 1986;
114(1):185–204.

44. Saito N, Beylkin G. Multiresolution representations using the auto-correlation functions of compactly supported
wavelets. IEEE Transactions on Signal Processing 1993; 41(12):3584–3590.

45. Daubechies I. Ten Lectures on Wavelets. CBMS-NSF regional conference series in applied mathematics. Society
for Industrial and Applied Mathematics, Philadelphia, PA, 1992.

46. van der Vorst H. Bi-CGStab: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric
linear systems. SIAM Journal on Scienti�c and Statistical Computing 1992; 13:631–644.

47. Liandrat J, Tchamitchian P. Resolution of 1D regularized Burgers equation using a spatial wavelet approximation.
Technical Report ICASE 90-83, NASA, NASA Langley Research Center, Hampton VA 23665-5225, 1990.

48. Harten A. The arti�cial compression method for computation of shocks and contact discontinuities, iii self-adjoint
hybrid schemes. Mathematics of Computation 1978; 32:363–389.

49. Ducros F, Laporte F, Souleres T, Guinot V, Moinat P, Caruelle B. High-order �uxes for conservative skew-
symmetric-like schemes in structured meshes: application to compressible �ows. Journal of Computational
Physics 2000; 161(1):114–139.

50. Sj�ogreen B, Yee HC. Multiresolution wavelet based adaptive numerical dissipation control for high order
methods. Journal on Scienti�c Computing 2004; 20(2):211–255.

51. Gerritsen M, Olsson P. Designing an e�cient solution strategy for �uid �ows ii. Stable high-order central �nite
di�erence schemes on composite adaptive grids with sharp shock resolution. Journal of Computational Physics
1998; 147(2):293–317.

52. DeVore RA. Nonlinear Approximation, vol. 7. Cambridge University Press: Cambridge, MA, 1998; 51–150.
53. Sanders R, Weiser A. High resolution staggered mesh approach for nonlinear hyperbolic systems of conservation

laws. Journal of Computational Physics 1992; 101(2):314–329.
54. Sod GA. A survey of several �nite-di�erence methods for systems of nonlinear hyperbolic conservation laws.

Journal of Computational Physics 1978; 27(1):1–31.
55. Xu S, Aslam T, Stewart DS. High resolution numerical simulation of ideal and non-ideal compressible reacting

�ows with embedded internal boundaries. Combustion Theory and Modeling 1997; 1:113–142.
56. Fedkiw RP, Merriman B, Osher S. High accuracy numerical methods for thermally perfect gas �ows with

chemistry. Journal of Computational Physics 1997; 132(2):175–190.
57. Singh S, Rastigejev YA, Paolucci S, Powers JM. Viscous detonation in H2–O2–Ar using intrinsic low-

dimensional manifolds and wavelet adaptive multilevel representation. Combustion Theory and Modelling 2001;
5(2):163–184.

58. Merk HJ. The macroscopic equations for simultaneous heat and mass transfer in isotropic, continuous and closed
systems. Applied Scienti�c Research A 1959; 8:73–99.

59. Meniko� R. Errors when shock-waves interact due to numerical shock width. SIAM Journal on Scienti�c
Computing 1994; 15(5):1227–1242.

60. Fedkiw RP, Marquina A, Merriman B. An isobaric �x for the overheating problem in multimaterial compressible
�ows. Journal of Computational Physics 1999; 148(2):545–578.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:749–784


